
Ockam
Design Review

November 22, 2023

Prepared for:

Mrinal Wadhwa
Ockam Inc.

Prepared by: Scott Arciszewski, Fredrik Dahlgren, Marc Ilunga, and Joop van de Pol

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Ockam Design Review
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Ockam
under the terms of the project statement of work and has been made public at Ockam’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Ockam Design Review
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Goals 8
Project Targets 9
Project Coverage 10
Automated Testing 13
Summary of Findings 15
Detailed Findings 16

1. The system is vulnerable to SNDL attacks by quantum computers 16
2. Serialized VersionedData struct’s data is ambiguous 18
3. Truncating ChangeHistory hash to 160 bits introduces risk of collisions 20
4. The meanings of the primary key fields created_at and expires_at are
undocumented 21
5. Insufficient threat model documentation 23
6. The supported signature schemes have different security properties 24

A. Vulnerability Categories 26
B. Design Quality Findings 28
C. Formal Modeling 29
D. Use Case Diagrams 38

Trail of Bits 3 Ockam Design Review
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Sam Greenup, Project Manager
sam.greenup@trailofbits.com

The following engineering director was associated with this project:

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

The following consultants were associated with this project:

Scott Arciszewski, Consultant Fredrik Dahlgren, Consultant
scott.arciszewski@trailofbits.com fredrik.dahlgren@trailofbits.com

Marc Ilunga, Consultant Joop van de Pol, Consultant
marc.ilunga@trailofbits.com joop.vandepol@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 28, 2023 Pre-project kickoff call

October 10, 2023 Status update meeting #1

October 16, 2023 Status update meeting #2

October 20, 2023 Status update meeting #3

November 1, 2023 Status update meeting #4

November 6, 2023 Delivery of report draft

November 6, 2023 Report readout meeting

November 22, 2023 Delivery of comprehensive report

Trail of Bits 4 Ockam Design Review
PUBLIC

Executive Summary

Engagement Overview
Ockam engaged Trail of Bits to review the security of Ockam, which is a set of protocols and
managed infrastructure. Ockam’s protocols aim to enable secure end-to-end
communication between endpoints across various topologies as if they were connected
locally, without any modification of the endpoints themselves. Moreover, users may deploy
the protocols on their premises, thereby not relying on Ockam’s managed infrastructure
and obviating the need to trust Ockam or its infrastructure.

A team of four consultants conducted the review from October 2 to November 3, 2023, for
a total of 11 engineer-weeks of effort. Our testing efforts focused on the security of
Ockam’s protocols in the context of two specific use cases: TCP Portals and Kafka Portals.
With full access to design documentation, we reviewed the design of the protocols,
focusing on the two use cases in scope. We conducted the review using automated and
manual processes. While we had access to the current implementation of Ockam’s
protocols to aid in understanding the design, the implementation itself was not in scope for
the review.

Observations and Impact
Ockam’s protocols use robust cryptographic primitives according to industry best practices.
None of the identified issues pose an immediate risk to the confidentiality and integrity of
data handled by the system in the context of the two in-scope use cases. The majority of
identified issues relate to information that should be added to the design documentation,
such as threat model details (TOB-OCK-5, and TOB-OCK-1) and increased specification for
certain aspects (TOB-OCK-2, TOB-OCK-4, and TOB-OCK-6).

Regular question-and-answer sessions were held during the engagement to clarify any
questions about the protocols and to provide information that was missing from the design
documentation. These were very helpful to understanding the overall system as well as any
design considerations made by the developers.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Ockam take the following steps:

● Remediate the findings disclosed in this report. Although no findings indicate
any immediate or high-severity risk to the Ockam system, the findings should be
addressed as part of a direct remediation or as part of any redesign that may occur
when addressing other recommendations.

Trail of Bits 5 Ockam Design Review
PUBLIC

● Incorporate all relevant information from the Q&A sessions into the design
documentation. The questions asked during this design review correspond to
potential system issues that are not excluded by the current design documentation.
While the answers showed that the actual system does not suffer from these
specific issues, incorporating the answers into the design documentation would
help ensure that this becomes an explicit, rather than implicit, part of the design.

● Consider a security audit of the implementation of Ockam’s protocols.
Ultimately, the implementation of a protocol determines the risk associated with the
protocol, as a secure design does not imply a secure implementation. Issues in the
deployment of a protocol may arise from discrepancies between the design and the
implementation or from specific implementation choices that violate the
assumptions in the design. A review of the implementation of Ockam’s protocols can
uncover such issues, helping the deployment of Ockam to be as safe as possible. For
specific use cases, it may be necessary to audit the corresponding configuration of
third-party infrastructure, such as GitHub and AWS.

● Consider further formal analysis of Ockam’s protocols. In our review, we used
automated tooling to assist with the analysis in the allotted time. Formal models
provide a high level of assurance in the targeted protocol and are also a good
starting point when trying to understand how a small change or update would
impact the overall security guarantees provided by the protocol.

Moreover, if the threat model and expected security guarantees are documented as
recommended in this report, a formal analysis may be valuable in understanding
the guarantees provided by the system. For this reason, we recommend that Ockam
consider additional formal analyses of its protocols. The section on Coverage
Limitations provides some example protocol aspects that could benefit from formal
modeling.

Trail of Bits 6 Ockam Design Review
PUBLIC

Finding Severities and Categories

The following tables provide the number of findings by severity, difficulty, and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 3

Low 0

Informational 3

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Cryptography 6

Difficulty Count

Low 0

Medium 0

High 4

Undetermined 0

Not Applicable 2

Trail of Bits 7 Ockam Design Review
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of Ockam’s protocols with
respect to the TCP Portals and Kafka Portals use cases. Specifically, we sought to answer
the following non-exhaustive list of questions:

● Are there any critical design flaws that could result in the compromise of data
confidentiality or integrity?

● Is the design vulnerable to any known cryptographic attacks?

● Does the system use any weak cryptographic primitives?

● Is the trust infrastructure sufficiently secure?

● Does the system follow best practices for the generation, distribution, storage, and
destruction of cryptographic keys?

● Are handshakes conducted in a cryptographically secure manner?

● Are secure channel protocols used effectively?

● Are access controls, policies, and credentials cryptographically secure?

● Is the Noise framework securely used within the design?

● Does the design of the system lend itself well to improvements and iterations over
time?

● Within the design, is end-to-end encryption guaranteed?

● Does the design enable the deployment of the system and onboarding of new
clients in a secure manner?

Trail of Bits 8 Ockam Design Review
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Ockam design documentation
Repository https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/

Version 2023-11-03

Type Documentation

Trail of Bits 9 Ockam Design Review
PUBLIC

https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Manual review of the design documentation. The review focused on the
following topics:

○ Secure channels. Secure end-to-end communication is implemented using
the Noise framework, a well-known framework for designing secure channel
protocols. Ockam Secure Channels are based on the XX pattern of the Noise
protocol. We reviewed the use of secure channels in Ockam, focusing on
whether the Noise protocol is properly instantiated and used effectively to
provide end-to-end security. We paid special attention to the effect of
unreliable delivery on the security of secure channels. We also investigated
authentication guarantees of the secure channels when used in a
post-specified setting where nodes may establish secure channels with other
nodes whose identities are not known in advance.

○ Routing and transport mechanisms. Within Ockam’s infrastructure, routing
and transport mechanisms deliver messages with no reliability guarantees
out of the box, unlike protocols such as TCP or QUIC. Additional mechanisms
are used in the system to provide some forms of reliability, but these are
currently not documented in the design. We investigated the routing and
transport mechanisms used in Ockam, focusing on their impact on the
security of secure channels. Moreover, we examined potential concerns
leading to denial of service or waste of resources.

○ Identities and credentials. In the Ockam system, each participating entity
has one or more Ockam Identities. These are cryptographically verifiable
digital identities that allow other entities to verify the authenticity of digital
signature keys used to authenticate users. To bootstrap trust in these
identities, the Ockam system supports the use of credentials, which are
signed attestations of identities provided by an issuer. We investigated the
cryptographic primitives used to realize these concepts, as well as the
applicability of known cryptographic attacks.

○ Access controls and policies. The Ockam system relies on various
cryptographic techniques to guarantee authenticity and confidentiality. Each
particular use case in the Ockam system can use access controls and access
control policies to ensure that certain checks are performed, such as the
verification of credentials from a specified issuer. We investigated whether

Trail of Bits 10 Ockam Design Review
PUBLIC

parsing issues could circumvent these security controls and whether they
were correctly applied in the two in-scope use cases.

○ TCP Portals and Kafka Portals use cases. These use cases focus on
enabling end-to-end encrypted communication between endpoints over any
network topology. The TCP Portals use case focuses on enabling applications
to communicate with each other as if they were making a local TCP
connection, whereas the Kafka Portals use case achieves the same for
applications that consider they are talking to Kafka servers via a local
connection. We investigated the use of third-party infrastructure (such as
GitHub, AWS, OAuth, etc.), the correct use of different aspects supported by
the overall Ockam system, and whether any issues in specific system
components could be used to compromise confidentiality or integrity of user
data.

● Q&A sessions with the designers. In cases where the documentation did not
provide sufficient information to determine the applicability or impact of potential
attacks, we asked questions of the designers, who provided answers.

● Formal modeling of protocol aspects. We used Verifpal and CryptoVerif to model
the following aspects:

○ Modeling with Verifpal. We used Verifpal to model the cryptographic core
of secure channels. We focused on confidentiality and authentication
guarantees. We also modeled identities in Ockam to understand whether the
intended authentication guarantees are provided.

○ Modeling with CryptoVerif. We modeled identities in CryptoVerif, which
allowed us to further understand the exact security properties needed to
ensure that the design provided sufficient guarantees for each intended use
case.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. We did not formally model all aspects of the system. Specifically, the following
may warrant further modeling (although all were considered as part of the manual review):

● Identity binding guarantees of secure channels. The secure channel protocol
allows post-specified peers, where communicating parties may learn about the
peer's identity upon completion of the protocol. In such scenarios, the protocol
must properly bind identities to the derived session key. In particular, the protocol
must protect against identity misbinding attacks, also known as unknown key-share
attacks. Ockam builds upon Noise’s public key binding to bind identities to session

Trail of Bits 11 Ockam Design Review
PUBLIC

https://eprint.iacr.org/2022/1705
https://link.springer.com/chapter/10.1007/3-540-49162-7_12

keys. Due to time limitations, we did not formally model whether such binding was
done securely.

● Complete modeling of identities and credentials. In our formal modeling work,
we focused on modeling the cryptographic core mechanisms underpinning
identities, change histories, and credentials. In doing so, we abstracted some
elements, focusing only on cryptographically relevant aspects. Nevertheless, more
complete modeling will provide valuable insights into the security of the different
components used in Ockam.

● Post-compromise security of various keys. We did not model any
post-compromise security of identity keys, purpose keys, or session keys. It is worth
investigating what guarantees can still be provided when specific keys are
compromised.

Trail of Bits 12 Ockam Design Review
PUBLIC

Automated Testing
Trail of Bits uses automated techniques to extensively test the security properties of
software and protocols. We use both open-source static analysis and fuzzing utilities, along
with tools developed in house, to perform automated testing of source code and compiled
software. We further use open-source formal modeling tools to perform automated testing
of cryptographic protocols and system designs.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Verifpal An open-source symbolic protocol analyzer that focuses on
ease of use, allowing rapid modeling and verification of
cryptographic protocols

Appendix C.1

CryptoVerif An open-source computational protocol verifier and proof
assistant used to create models that state precise
assumptions on the primitives used in the protocol and the
desired security properties to be proven

Appendix C.2

Areas of Focus
Our automated testing and verification work focused on the following system properties:

● Authenticity of Ockam Identities

● Confidentiality and authenticity of data exchanged during the secure channel
handshake

The results of this focused testing are detailed below.

Authenticity of Ockam Identities. We used Verifpal to create a model of Ockam Identities
in a scenario where one user communicates two Change blocks to another user that has
access to the first user’s identifier. We also used CryptoVerif to create a model of change
generation in a scenario where an adversary can obtain signatures on arbitrary messages
under the primary identity keys.

Property Tool Result

Authenticity of first Change block based on Ockam Identifier Verifpal Passed

Trail of Bits 13 Ockam Design Review
PUBLIC

https://verifpal.com/
https://bblanche.gitlabpages.inria.fr/CryptoVerif/

Property Tool Result

Authenticity of second Change block based on Ockam
Identifier

Verifpal Passed

Existential unforgeability of Change blocks CryptoVerif Passed

Strong unforgeability of Change blocks CryptoVerif TOB-OCK-6

The linked finding above is informational severity and not currently exploitable; please see
the finding itself for further details.

Ockam Secure Channels. We used Verifpal to model the cryptographic core of Ockam
Secure Channels, including but not limited to the handshake.

Property Tool Result

Secrecy of session keys Verifpal Passed

Confidentiality and authenticity of transported messages Verifpal Passed

The design principles of the Noise framework enable the XX pattern to provide further
security guarantees. For instance, the XX pattern is designed to be resistant to key
compromise impersonation (KCI) attacks. KCI resistance guarantees that even when a
user’s long-term secret key is compromised, the adversary should not be able to
impersonate other users towards the user whose key was compromised. This result has
been further confirmed by Dowling, Rösler, and Schwenk in their analysis of the Noise
framework. Therefore, we did not verify these guarantees using our formal model.

Trail of Bits 14 Ockam Design Review
PUBLIC

https://noiseprotocol.org/noise.html#payload-security-properties
https://noiseprotocol.org/noise.html#payload-security-properties
https://eprint.iacr.org/2019/436
https://eprint.iacr.org/2019/436

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 The system is vulnerable to SNDL attacks by
quantum computers

Cryptography Medium

2 Serialized VersionedData struct’s data is
ambiguous

Cryptography Informational

3 Truncating ChangeHistory hash to 160 bits
introduces risk of collisions

Cryptography Informational

4 The meanings of the primary key fields created_at
and expires_at are undocumented

Cryptography Medium

5 Insufficient threat model documentation Cryptography Medium

6 The supported signature schemes have different
security properties

Cryptography Informational

Trail of Bits 15 Ockam Design Review
PUBLIC

Detailed Findings

1. The system is vulnerable to SNDL attacks by quantum computers

Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-OCK-1

Target: Keys and Vaults section

Description
The Ockam system uses the Noise XX handshake pattern with ECDH based on X25519,
which could be broken using a large-scale quantum computer. Currently, no quantum
computer capable of doing this exists. Although Ockam could be quickly updated to resist
quantum attacks, current handshakes would still be vulnerable to "store now, decrypt
later" (SNDL) attacks using a quantum computer, as described in the exploit scenario
below. The design should address whether this is considered as part of the threat model.

Exploit Scenario
An attacker captures and stores the full transcript of a handshake and the subsequent
encrypted communications. Once a large-scale quantum computer becomes available, the
attacker recovers all ECDH private keys using the quantum computer. They use this to
obtain the derived keys from the transcript and decrypt the communications.

Recommendations
Short term, document whether SNDL attacks using a quantum computer are applicable to
the threat model for different use cases so that users can consider this in the context of
their own risk management. If the attacks are applicable, investigate the feasibility of
incorporating post-quantum secure alternatives into the system.

Because the goal is to prevent SNDL attacks, it is not necessary to upgrade all
cryptographic primitives to be secure against a quantum computer. However, at least one
of the contributions to the key derivation must come from a PQC KEM (e.g., Signal’s
PQXDH). As described in the PQNoise paper, it is straightforward to update the Noise ee
pattern using a PQC KEM to achieve the same round complexity. Instead of replacing the
classical DH, we propose adding a PQC KEM to achieve a hybrid solution (e.g., the IETF draft
on hybrid key exchange in TLS).

Long term, if attacks using a quantum computer are part of the threat model for Ockam
use cases, migrate both the key exchanges and digital signatures to a hybrid solution

Trail of Bits 16 Ockam Design Review
PUBLIC

https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/pqxdh/
https://eprint.iacr.org/2022/539
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/

incorporating both classical and post-quantum resistant primitives (e.g., using PQNoise
with suitable hybrid KEMs).

Trail of Bits 17 Ockam Design Review
PUBLIC

https://eprint.iacr.org/2022/539

2. Serialized VersionedData struct’s data is ambiguous

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-OCK-2

Target: Identities and Credentials section

Description
Identity private keys are used to sign both Change blocks, which are used to rotate the
identity keys, and PurposeKeyAttestation blocks, which are used to attest to purpose
keys. Before being signed, the data inside these blocks is serialized using the Concise
Binary Object Representation (CBOR) data format and included in a VersionedData struct.

However, this serialization will not add different labels for these different data types by
itself, which means that the data field of a VersionedData instance does not indicate
which type it contains (i.e., ChangeData or PurposeKeyAttestationData). Therefore, it
is possible to provide a signed VersionedData instance containing a
PurposeKeyAttestationData block where the receiver expects it to contain a
ChangeData block. The receiver will potentially accept the signature as valid as long as it is
created using the expected identity key.

Whether this confusion can be exploited depends on implementation details that are not in
scope for this design review. Specifically, it depends on what happens when a
PurposeKeyAttestationData type is deserialized as a ChangeData type. Currently, it
seems likely that this will fail due to differences in the structure of the types, but it is not
possible to determine the full behavior from the design description alone. Even if the
current implementation rejects a serialized PurposeKeyAttestationData instance as
invalid when it attempts to deserialize the byte vector as a ChangeData structure, a future
version of the protocol may accept it as valid if either of the two types change.

Exploit Scenario
A node creates and attests to various purpose keys to outsource the handling of the
purpose to other instances, which do not have access to the identity key. An attacker
compromises one of the instances and obtains the PurposeKeyAttestation block
containing a signed VersionedData instance.

The attacker communicates a new Change to another node, while providing the signed
VersionedData from the PurposeKeyAttestation block. The previous_signature
field inside the Change block is set to the signature from the PurposeKeyAttestation
block (i.e., the signature on the VersionedData instance containing the

Trail of Bits 18 Ockam Design Review
PUBLIC

PurposeKeyAttestationData). The other node will accept the previous_signature on
the VersionedData because it is a signature under the same identity primary key.

For this exploit to be useful, the data field of the VersionedData instance, which is a
serialized PurposeKeyAttestationData type, must deserialize to a ChangeData type
with a public key for which the attacker knows the corresponding private key. Otherwise,
the attacker will be unable to provide a proper signature for the Change block.

Recommendations
Short term, specify in the design that the data field inside the VersionedData struct to be
signed using identity primary keys must be unambiguous. For example, this field could be a
single enum type that contains the PurposeKeyAttestationData and ChangeData types
with different CBOR labels. Alternatively, add an additional label to the VersionedData
struct to indicate which data type it contains.

Long term, ensure that all different types of private keys used to create digital signatures
sign only a single unambiguous type (with different labels for each of the possible subtypes
or contained types).

Trail of Bits 19 Ockam Design Review
PUBLIC

3. Truncating ChangeHistory hash to 160 bits introduces risk of collisions

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-OCK-3

Target: Identities and Credentials section

Description
The Identifier and ChangeHash types are defined as the first 160 bits of a SHA-256 hash
of the Change record inside of a ChangeHistory chain. A collision attack against SHA-256
truncated to 160 bits is possible with a time cost of approximately 280 queries using
standard collision-finding techniques based on Pollard’s Rho method. These figures are on
the upper end of feasibility but still possible to exploit.

Exploit Scenario
Mallory, a user with an existing Ockam Identity wants to cause disagreement about her
current primary public key between different nodes, who are relying on the latest
ChangeHash to identify the user’s primary public key.

She uses Pollard’s Rho method to find two ChangeData records with the same
ChangeHash, which allows her to create two distinct ChangeHistory chains where the
final entries disagree on the primary public key but still have the same ChangeHash.

Computing 280 SHA-256 hashes is within the reach of botnets today. For comparison, the
Bitcoin mining network computes about 268 SHA-256 hashes per second (or about 292 per
year). The equivalent amount of computational resources can cross the 280 threshold in a
little over 1 hour.

Once a collision is found, Mallory then selectively shares different Change records to
different partitions of the network.

Recommendations
Short term, increase the length of the truncated SHA-256 hash from 160 bits (20 bytes) to
at least 192 bits (24 bytes) for the ChangeHash. With this change, the cost of finding a
collision becomes 296 rather than 280, which multiplies the time required to find a collision
by a factor of 65,536. Consequently, the collision attack is no longer practical.

Long term, whenever reducing the security margin of a cryptographic primitive (e.g.,
truncating hashes in this case), document why this is done and why the impact on security
is considered acceptable.

Trail of Bits 20 Ockam Design Review
PUBLIC

https://link.springer.com/content/pdf/10.1007/PL00003816.pdf

4. The meanings of the primary key fields created_at and expires_at are
undocumented

Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-OCK-4

Target: Identities and Credentials section

Description
The meanings of the created_at and expires_at fields on the ChangeData type are not
sufficiently explained by the design documentation. This may lead users to make
security-critical decisions based on a flawed interpretation of these fields.

The ChangeData type is used to update a user’s primary key. The type’s two fields,
created_at and expires_at, define the lifetime of the new key. The Identities and
Credentials section mentions that the expires_at timestamp indicates “when the
primary_public_key included in the change should stop being relied on as the primary
public key of this identity.”

However, the documentation does not specify what happens if a user allows their primary
key to expire without signing and broadcasting a new change. Intuitively, it is easy to
assume that nodes accept changes only from live keys, so an expired key can no longer
sign new changes. However, this is not described in the documentation and there is
currently no check in the code performing change history validation to ensure this
behavior.

The meaning of the created_at field is also not sufficiently explained. It is currently
unclear how this field should be validated or acted on by other nodes. In fact, the
implementation explicitly allows changes where created_at is greater than expires_at.
This means that the created_at field cannot be relied on to define an overall lifetime or
validity period for the key.

Exploit Scenario
Alice uses Ockam to set up a network of nodes. One of the nodes is taken offline, and
eventually the primary key used for the node expires. Since the key has expired, Alice
believes that it is no longer sensitive and does not take proper precautions to either protect
or delete the key.

Mallory, a malicious user, gains access to the node and obtains the expired key. She can
now create a new change based on the expired key. She broadcasts the updated change
history to other nodes in the network. Since nodes do not check the expires_at field

Trail of Bits 21 Ockam Design Review
PUBLIC

when the change history is validated, the new change is accepted as valid by other nodes,
allowing Mallory to gain access to the network.

Recommendations
Short term, document the expected meanings of the created_at and expires_at fields,
and specify how these fields should be validated. Ensure that changes signed by expired
keys are rejected by all nodes. Alternatively, if the lifetime is meant to be enforced only for
purpose key attestations, document this restriction and rename the two fields (e.g., to
attestations_not_valid_before and attestations_not_valid_after) to make
this clear.

Additionally, clearly specify the full life cycle of secrets and credentials, including any
applicable revocation or expiration mechanisms.

Long term, ensure that the documentation always reflects the proper meaning of each
value specified by the protocol. In particular, if values have unintuitive or surprising
meanings, they should always be documented.

Trail of Bits 22 Ockam Design Review
PUBLIC

5. Insu�cient threat model documentation

Severity: Medium Difficulty: Not Applicable

Type: Cryptography Finding ID: TOB-OCK-5

Target: All sections

Description
The threat model for Ockam’s protocols is not specified in the documentation. There is no
description of the different actors in the system, the assets they value, the other actors
they trust, and the security controls for achieving security goals. From the threat model, it
should be clear what aspects of the assets are important, including but not limited to
confidentiality, integrity or authenticity, and availability.

The design review included weekly discussions between auditors and developers, who
provided all relevant threat modeling information for the two in-scope use cases. However,
in the absence of a documented general threat model for the protocol, users and
developers must make assumptions about the security goals of each component and how
these goals are met in the implementation. If any of these assumptions are false, this could
lead to surprising behavior and potentially real security issues when users deploy the
protocol.

There is no specific exploit scenario for this finding, so the difficulty rating is not applicable.

Recommendations
Short term, add an informal threat model to each use case and section of the
documentation to ensure no gaps exist.

Long term, develop a formal threat model that applies to Ockam’s protocols. Explicitly state
any assumptions that must be true for the protocol to be secure. Define different types of
threat actors and specify how the protocol deals with them.

Once a general threat model is in place, each use case and section of the protocol needs a
threat model section that describes only the ways in which they deviate from the general
model for the overall protocol.

Trail of Bits 23 Ockam Design Review
PUBLIC

6. The supported signature schemes have di�erent security properties

Severity: Informational Difficulty: Not Applicable

Type: Cryptography Finding ID: TOB-OCK-6

Target: All sections

Description
Ockam’s supported signature schemes, EdDSA and ECDSA, offer different security
guarantees but are used interchangeably. Although this issue is not currently exploitable, if
Ockam modifies the system in the future, it could become necessary to rely on additional
security guarantees.

The signed change history in Ockam allows an identity to rotate its primary key and attest
to the validity of this change. Each rotation is associated with a Change data structure that
is hashed and then signed by the current primary key and the previous primary key (if it
exists). The documentation specifies two signing algorithms:
EdDSACurve25519Signature and ECDSASHA256CurveP256Signature. The former is
the preferred algorithm, as the latter algorithm is supported only due to the lack of support
for EdDSA in cloud hardware security modules (HSMs). A formal modeling of the security
properties of the signature scheme with CryptoVerif reveals a discrepancy between the
security guarantees offered by the two schemes.

In terms of security guarantees, EdDSA and ECDSA are equivalent only in that they are both
believed to guarantee Existential Unforgeability under Chosen-Message Attacks (EUF-CMA).
This means that an attacker who has several valid signatures on various messages will be
unable to create a valid signature for a new message.

However, EdDSA, as instantiated, provides additional guarantees that ECDSA does not. In
particular, EdDSA provides Strong Unforgeability under Chosen-Message Attacks
(SUF-CMA), so an attacker who has a number of valid signatures on various messages will
be unable to create a valid new message-signature pair.

ECDSA does not provide this guarantee because for any valid ECDSA signature (r,s), the
signature (r,-s) is also valid. This means that an attacker could take a Change block with
associated ECDSA signatures and share the same Change block with modified (but valid)
signatures. When modeling change histories with CryptoVerif, only the strong
unforgeability of the first change can be proven.

The issue described above does not pose a direct threat in the current deployment of
Ockam in the context of the two in-scope use cases, which do not rely on strong

Trail of Bits 24 Ockam Design Review
PUBLIC

https://bblanche.gitlabpages.inria.fr/CryptoVerif/
https://bblanche.gitlabpages.inria.fr/CryptoVerif/

unforgeability. However, from a design perspective, it is desirable to have a clear
understanding of what security guarantees are expected from different components,
irrespective of their concrete instantiations. Furthermore, any future extension to the
protocol might involve beyond unforgeability guarantees like exclusive ownership (which
means that any valid signature can be created only from the private key corresponding to
the public key). Fortunately, the current signing mechanism in Ockam is close to the BUFF
construction, which provides beyond unforgeability security.

There is no specific exploit scenario for this finding, so the difficulty rating is not applicable.

Recommendations
Short term, consider adding a brief description of the security properties of the signed
change histories and other signed data structures. Then document how the instantiations
of different components provide the expected security guarantees. Consider all use cases
of signatures in the system and whether any beyond unforgeability guarantees might be
expected. If SUF-CMA security is desired, ECDSA can be modified by restricting the s
component of the signature to the upper or lower half of its range.

Long term, specify all the cryptographic assumptions each system component is expected
to meet for the protocol to be secure. Document how each instantiation of a specific
primitive meets the required assumption.

Trail of Bits 25 Ockam Design Review
PUBLIC

https://link.springer.com/chapter/10.1007/11496137_10
https://eprint.iacr.org/2020/1525
https://eprint.iacr.org/2020/1525

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 26 Ockam Design Review
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Not Applicable We did not identify a specific exploit scenario for this finding.

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 27 Ockam Design Review
PUBLIC

B. Design Quality Findings
We identified the following design quality issues by reading the design documentation.
These are generally minor inconsistencies and typos that do not correspond to security
vulnerabilities. However, resolving them is recommended in case parts of the design
documentation are reused in customer-facing documentation:

● The description of the derivation of Ockam Identities is not consistent with the
implementation. It states that the identifier is a hash of a Change block, which
includes a signature. However, the identifier is a hash of only the included
ChangeData type.

● The image in the section on Purpose Key Attestations is missing a purpose in the
PurposeKeyAttestationData type (cf. the next image in the Credentials section).

● The image on the Noise handshake in the section on Authenticated Key
Establishment does not describe the construction of the payloads containing the
IdentityAndCredentials type of both the responder and initiator.

● The details of the Rekey operation are not specified in the design documentation.
The specification mentions that a rekey is done via an encryption operation.
However, the details of what is being encrypted are missing, and the specification
links only to the Noise specification for rekeying. For completeness, include a
description of rekeying in the Ockam documentation as well. This is also more
consistent with the description of the handshake, which includes more details from
the Noise specification.

● The sliding window mechanism is used to mitigate replay attacks. However, the
exact details of how this works are not included in the description of the sliding
window mechanism but are covered only implicitly by the examples.

● The title for the Trust Contexts section is misspelled.

● In the TCP Portals use case description, there are three occurrences of the typo
“idenity.”

● In the Kafka Portals use case description on creating a Kafka producer, the text
states that the command to create a Kafka Producer “creates a sidecar to a Kafka
Consumer.” It further states that certain components and responses “work exactly
the same as in the producer sidecar and the consumer sidecar above,” but it should
refer only to “the consumer sidecar above.”

Trail of Bits 28 Ockam Design Review
PUBLIC

https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/identities#identities
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/identities#purpose-key-attestations
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/identities#credentials
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/secure-channels#authenticated-key-establishment
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/secure-channels#authenticated-key-establishment
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/secure-channels#rekeying
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/secure-channels#rekeying
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/secure-channels#rekeying
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/reference/protocols/trust-contexts
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/use-cases/tcp-portals
https://app.gitbook.com/o/bSIWJRTRgnhbW4jNMcHT/s/pO5FblkZ0o5SR0BHF2gK/use-cases/kafka-portals#create-a-kafka-producer

C. Formal Modeling
During the engagement, we used the symbolic model checker Verifpal to formally model
different aspects of the protocol. This work and the results obtained are described in this
section.

C.1 Verifpal Modeling
Verifpal is a symbolic model checker, much like Tamarin and ProVerif. Its main advantage
over other tools is that it focuses on usability first, which allows the user to quickly model
new protocols and updates to existing protocols.

Symbolic model checkers like Verifpal model cryptographic primitives as black boxes.
Protocol participants and an attacker can perform computations using the defined
cryptographic primitives, and algebraic properties of these primitives are modeled using
equations. The attacker is allowed to run the protocol an unbounded number of times to
observe (in the case of a passive attacker) and modify (in the case of an active attacker)
messages in flight. (This is sometimes referred to as the Dolev-Yao model.) In this model it
is possible to prove equivalence between terms (e.g., a shared secret computed individually
by two protocol participants), as well as model common security properties like
confidentiality and authenticity of messages between participants. It is also possible to
analyze more complex security properties like forward secrecy, post-compromise security,
and security against KCI attacks.

However, there are limits to what can be expressed in the symbolic model. Since
cryptographic primitives are modeled in an idealized way, there is no way to analyze
attacker advantage or asymptotic security properties. (These types of properties are more
naturally expressed in the computational model using tools like CryptoVerif.)

Modeling Ockam Identities Using Verifpal
We used Verifpal to model Ockam Identities and change history validation. The goal of this
exercise was to formally prove that an attacker could not tamper with updates to the
change history without it being discovered. The following model implements change history
validation under the assumption that identities are distributed out of band. For simplicity,
we disregard protocol versioning, purpose key revocation, and primary key lifetimes
because these fields are irrelevant for the security property we are trying to model.

attacker[active]

// Alice creates her first primary key pair.
principal Alice [
knows private secret_key_0

// Generate `ChangeData` 0.
public_key_0 = G^secret_key_0

Trail of Bits 29 Ockam Design Review
PUBLIC

https://verifpal.com/
https://tamarin-prover.github.io/
https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/CryptoVerif/

change_data_0 = CONCAT(nil, public_key_0)

// Compute identity as the hash of the first `ChangeData` and sign the first hash.
change_hash_0 = HASH(change_data_0)
signature_0 = SIGN(secret_key_0, change_hash_0)

]

// Alice updates her primary key pair.
principal Alice [
knows private secret_key_1

// Generate `ChangeData` 1 and sign its hash.
public_key_1 = G^secret_key_1
change_data_1 = CONCAT(change_hash_0, public_key_1)
change_hash_1 = HASH(change_data_1)
signature_1 = SIGN(secret_key_1, change_hash_1)
previous_signature_1 = SIGN(secret_key_0, change_hash_1)

]

// Alice now sends her `ChangeHistory` to Bob.
// Alice's identity (`change_hash_0`) is shared out of band.
Alice -> Bob: [change_hash_0], change_data_0, signature_0 // nil
Alice -> Bob: change_hash_1, change_data_1, signature_1, previous_signature_1

Figure C.1.1: Alice creates two changes, which are then sent to Bob.

// Bob verifies Alice's first `Change` against her identity.
principal Bob [
// Verify the first `ChangeHash` against Alice's known identity.
valid_0 = ASSERT(HASH(change_data_0), change_hash_0)?

// Verify the `ChangeHash` signature against the current key.
alice_previous_change_0, alice_public_key_0 = SPLIT(change_data_0)
_ = ASSERT(alice_previous_change_0, nil)?
_ = SIGNVERIF(alice_public_key_0, change_hash_0, signature_0)?

]

// Dummy message signaling that the `ChangeData` received by Bob was accepted.
Bob -> Alice: [valid_0]

// Bob verifies Alice's second `Change` against her first primary public key.
principal Bob [
// Verify `ChangeHash` signature against the previous key.
valid_1 = SIGNVERIF(alice_public_key_0, change_hash_1, previous_signature_1)?
_ = ASSERT(HASH(change_data_1), change_hash_1)?

// Verify `ChangeHash` signature against the current key.
alice_previous_change_1, alice_public_key_1 = SPLIT(change_data_1)
_ = ASSERT(alice_previous_change_1, change_hash_0)?
_ = SIGNVERIF(alice_public_key_1, change_hash_1, signature_1)?

]

// Dummy message signaling that the `ChangeData` received by Bob was accepted.

Trail of Bits 30 Ockam Design Review
PUBLIC

Bob -> Alice: [valid_1]

// Alice has to use all messages received in order for the model to compile.
principal Alice [
_ = HASH(valid_0)
_ = HASH(valid_1)

]

Figure C.1.2: Bob validates the two changes against Alice’s identity, which is sent out of band.

queries [
// The attacker cannot have tampered with Alice's first `Change` under the
// assumption that Bob accepts the first `ChangeData` as valid.
authentication? Alice -> Bob: change_data_0 [
precondition [Bob -> Alice: valid_0]

]
// The attacker cannot have tampered with Alice's second `Change` under the
// assumption that Bob accepts the second `ChangeData` as valid.
authentication? Alice -> Bob: change_data_1 [
precondition [Bob -> Alice: valid_1]

]
]

Figure C.1.3: The model checks whether the attacker could have tampered with either of the two
ChangeDatamessages under the assumption that Bob accepted the message as valid.

We modeled the protocol using an active attacker under the assumption that Alice’s
identity is shared out of band with Bob. In Verifpal, this can be achieved using guarded
messages (denoted using square brackets). Since each change is validated in multiple
steps, we had to indicate to the prover that Bob may compute on untrusted data as part of
the validation process. For this reason, we modeled authentication under the additional
assumption that Bob successfully validates the corresponding change, which is indicated by
sending a dummy message (denoted valid_0 and valid_1 above) to Alice.

Running the prover on this model did not identify any attacks on the protocol. This offers a
high level of confidence that the design is secure against active attacks.

When not including the additional assumption and the dummy messages, Verifpal
describes the following hypothetical attack:

1. An attacker records the first Change and its self-signature.

2. The attacker replaces the second Change with the first Change, setting both
signatures to be the recorded self-signature.

3. Now Bob will verify the signature on the second Change using the public key of the
first Change, which will be correct since it is the self-signature.

Trail of Bits 31 Ockam Design Review
PUBLIC

4. Next, Bob will SPLIT the Change data, which Verifpal considers a computation on
attacker-provided (and hence non-authentic) data.

It is clear that this attack does not translate to Ockam Identities because the next step of
the verification would check the previous_change_hash in the Change data against the
hash of the first Change, which will fail in this case. However, the attack does highlight a
small issue in the design, which is that the previous_signature and signature fields of
a Change are not domain separated and an attacker can exchange or copy them. It is worth
considering fixing this issue, although it is currently not exploitable.

To reanalyze the model using Verifpal, save the model defined in figures C.1.1 - C.1.3 above
as a single file called ockam-identities.vp, and then run Verifpal on the model using the
following command:

verifpal verify ockam-identities.vp

C.2 CryptoVerif Modeling
CryptoVerif is a cryptographic proof assistant and protocol verifier that operates in the
computation model. Unlike symbolic verifiers, in CryptoVerif, messages are bitstrings,
cryptographic primitives are functions manipulating bitstrings, and the adversary is
modeled as a probabilistic polynomial-time Turing machine. Cryptographic proofs are then
carried out in the game-playing framework pioneered by Bellare and Rogaway (among
others). Concretely, the security of a protocol is analyzed through a game played between a
challenger and an adversary. The adversary is given access to several oracles that capture
the adversary’s capabilities (e.g., the adversary may obtain signatures over arbitrary
messages). Finally, a winning condition defines what action the adversary must perform for
a given security property to be broken (e.g., the adversary must produce a signature
forgery for a new message).

CryptoVerif proves security using sequences of games where the starting game is the
protocol that is modeled and the final game is an ideal protocol where the security is given
by construction. To deem a protocol secure, the sequence of games must result from small,
consecutive modifications that are mainly unnoticeable up to a certain negligible
probability. The probability of noticing divergences between games is argued based on the
security of a component used in the protocol (e.g., the unforgeability of a signature
scheme). Therefore, the output of CryptoVerif when the protocol is secure is a probability
bounding the adversary's ability to break the protocol.

Modeling Ockam Identities Using CryptoVerif
We used CryptoVerif to model some aspects of identities in Ockam. Modeling with
CryptoVerif is much more time consuming. Therefore, we made several simplifications in
our model. The model below analyzes the security of identities upon creation and upon
creation of the next primary key.

Trail of Bits 32 Ockam Design Review
PUBLIC

https://bblanche.gitlabpages.inria.fr/CryptoVerif/
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/332

At a high level, we consider an existing (honest) identity, and we demand that the adversary
not be able to claim that identity. Furthermore, we also demand that the adversary may
not produce a subsequent primary key that will be accepted. In other words, the adversary
should not be able to create a valid signature for the initial change data associated with the
identity nor for the subsequent primary key. As we discussed in TOB-OCK-6, an insight from
this model is that a valid signature on a change does not imply that it was created using the
corresponding private key unless the signature scheme is SUF-CMA secure.

We describe the model below. First, we define parameters and the custom types used in
the model (figure C.2.1).

(* Parameters *)
type keyseed [large,fixed]. (* Type for seed used for key generation *)
type pkey [bounded]. (* Type for public key *)
type skey [bounded]. (* Type for secret key *)
type signature [bounded]. (* Type for signatures *)
type hashoutput [fixed, large]. (* Type for hash output *)
type hashkey_t [fixed]. (* Type for hash key to model a random Oracle *)
(* NIL constant input in the first change data *)
const NIL: hashoutput.

Figure C.2.1: Type definitions and constants (ockam-identities.ocv:5–14)

Next, we define the cryptographic primitives we use—namely, a signature scheme and a
hash function. To experiment with different assumptions for the signature scheme, we may
replace the SUF_CMA_det_signature macro with the UF_CMA_det_signature macro. In
the second case, we assume only EUF-CMA security.

(* A hash function modeled as a random oracle *)
expand ROM_hash_2(hashkey_t, hashoutput, pkey, hashoutput, RO, RO_Oracle, qRom).
(* Signatures *)
proba Psign. (* Breaking the (S)UF-CMA property *)
proba Psigncoll. (* Collision between independently generated keys *)
expand SUF_CMA_det_signature(
keyseed, (* Seed used for key generation *)
pkey, (* Public key *)
skey, (* Secret key *)
hashoutput, (* Input space of signature scheme *)
signature, (* Signature (output) space of signature scheme *)
skgen, (* Secret key generation algorithm *)
pkgen, (* Public key generation algorithm *)
sign, (* Signature algorithm *)
verify, (* Verification algorithm *)
Psign,
Psigncoll

).

Figure C.2.2: Definition of cryptographic primitives (ockam-identities.ocv:16–34)

Trail of Bits 33 Ockam Design Review
PUBLIC

Next, we define helper functions.

(* Helper functions to serialize change data *)
fun serialize_change_1(pkey, pkey, hashoutput, signature, signature, signature):
bitstring [data].
(* Helper function to simplify signature key generation *)
letfun keygen() =
rk <-R keyseed;
sk <- skgen(rk);
pk <- pkgen(rk);
(sk, pk).

Figure C.2.3: Serialization and key generation helpers (ockam-identities.ocv:36–43)

Then we define events and a query that captures the security property that we want to
analyze—namely, the unforgeability of change histories.

(*
Events and corresponding queries capture the desired properties of the protocol.
We consider two users, A & B. B knows A's identity and engages in a protocol with
A,where A proves knowledge of the initial primary public key. In a second
interaction, A generates a new primary public key and sends the complete change
history to B.

`make_change_0` is set to true when A generates a signature over the initial
change data

*)
event make_change_0(pkey, signature).
(*
`make_change_1` is set to true when A generates a signature over the new change
data

*)
event make_change_1(pkey, pkey, hashoutput, signature, signature, signature).
(* `make_change_0` is set to true if B accepts the initial primary key *)
event accept_change_0(pkey, signature).
(* `make_change_1` is set to true if B accepts the new primary key *)
event accept_change_1(pkey, pkey, hashoutput, signature, signature, signature).
(*
The first query asserts that if B accepts the initial change, then A must have
generated the signature that B accepted. In other words, any `accept_change_0`
must correspond to a `make_change_0` event. The query is *injective*, meaning we
expect each event to happen once as modeled.

*)
query pk: pkey, sig: signature; inj-event(accept_change_0(pk, sig)) ==>
inj-event(make_change_0(pk, sig)).
(*
The second query asserts that if B accepts the new change, then A must have
generated the signature that B accepted. In other words, any `accept_change_1`
must correspond to a `make_change_1` event. The query is *injective*, meaning we
expect each event to happen once as modeled.

*)

Trail of Bits 34 Ockam Design Review
PUBLIC

query pk_0: pkey, pk_1:pkey, change_hash_1:hashoutput, sig_0: signature, sig_1_0:
signature, sig_1_1: signature; inj-event(accept_change_1(pk_0, pk_1, change_hash_1,
sig_0, sig_1_0, sig_1_1)) ==> inj-event(make_change_1(pk_0, pk_1, change_hash_1,
sig_0, sig_1_0, sig_1_1)).

Figure C.2.4: Events and queries (ockam-identities.ocv:46–73)

Now we define the process that models users’ actions—that is, the generation and
verification of signed change histories.

(*
`processB` knows an identity `change_hash0`. The adversary can submit **in
parallel** a signed change for either the initial primary key or the new primary
key.

*)
let processB(hf:hashkey_t, change_hash0: hashoutput, prim_pk_0: pkey) =

(
(*
B receives a public key and signature proving as initial change data. B
verifies the signature and accepts the new identity if the verification
succeeds. In that case, B sets the event `accept_change_0` to true.

*)
OinitB(pk: pkey, sig: signature) :=
change_hash <- RO(hf, NIL, pk);
if change_hash = change_hash0 && verify(change_hash0, pk, sig) then
(
event accept_change_0(pk, sig);
return(true)

)
else
(
return(false)

)
)
|
(
(*
B receives change corresponding to a new change data. B verifies the signed
history and sets `accept_change_1` to true if verification succeeds.

*)
Overfy_change1(new_change: bitstring) :=
(
let serialize_change_1(pk_0, pk_1, change_hash_1, sig_0, sig_1_0, sig_1_1) =

new_change in
computed_change_hash0 <- RO(hf, NIL, pk_0);
computed_change_hash1 <- RO(hf, change_hash0, pk_1);
computed_change_hash0_is_valid <- computed_change_hash0 = change_hash0 &&

verify(change_hash0, pk_0, sig_0);
computed_change_hash1_is_valid <- computed_change_hash1 = change_hash_1 &&

verify(change_hash_1, pk_0, sig_1_0) && verify(change_hash_1, pk_1, sig_1_1);
if computed_change_hash0_is_valid && computed_change_hash1_is_valid then
(

Trail of Bits 35 Ockam Design Review
PUBLIC

event accept_change_1(pk_0, pk_1, change_hash_1, sig_0, sig_1_0, sig_1_1);
return(true)

)
else
(
return(false)

)
)

).

Figure C.2.5: User processes (ockam-identities.ocv:101–141)

Finally, we define the main process that runs the game and exposes the oracles to the
adversary. We also define a helper function that generates signing and verification key
pairs.

process
Ostart():=
(* `hf` is a hash key, selecting a hash function at random. *)
hf <-R hashkey_t;
(*
The primary key is generated and the corresponding identity `change_hash0`
is also computed

*)
let (prim_sk_0: skey, prim_pk_0: pkey) = keygen() in
change_hash0 <- RO(hf, NIL, prim_pk_0);

return(change_hash0); (* `change_hash0` is returned to the adversary *)

(*
The game exposes the oracles defined by `processA` and `processB` to the
Adversary. The adversary can also query the random oracle via `RO_Oracle`.

*)
(
run processA(hf, prim_sk_0, prim_pk_0)
|
run processB(hf, change_hash0, prim_pk_0)
|
run RO_Oracle(hf)

)

Figure C.2.6: The main process (ockam-identities.ocv:144–164)

We can run CryptoVerif with the following command:

CryptoVerif ockam-identities.ocv,

A successful proof shows that all queries have been proved. The output also contains the
probability that the adversary may invalidate each query and hence break the security of
change histories.

Trail of Bits 36 Ockam Design Review
PUBLIC

At a high level, the result below shows that breaking the security of change histories is
possible only with a small probability related to forging signatures of a secure signature
scheme and the probability of creating hash collisions.

[...]
RESULT Proved forall

sig_1_1, sig_1_0_0, sig_0_0: signature,
change_hash_1: hashoutput,
pk_1, pk_0_0: pkey;

inj-event(
accept_change_1(pk_0_0, pk_1, change_hash_1, sig_0_0, sig_1_0_0, sig_1_1)

) ==>
inj-event(

make_change_1(pk_0_0, pk_1, change_hash_1, sig_0_0, sig_1_0_0, sig_1_1)
)
up to probability

Psign(time_2, 1) + Psign(time_1, 2) + (1.5 * qRom^2 + 29 + 12 * qRom) /
|hashoutput| + 10 * Psigncoll

[...]
RESULT Proved forall

sig: signature,
pk: pkey;

inj-event(accept_change_0(pk, sig)) ==> inj-event(make_change_0(pk, sig))
up to probability

Psign(time_1, 2) + (1.5 * qRom^2 + 10 * qRom + 26) /
|hashoutput| + 7 * Psigncoll

[...]

Figure C.2.7: CryptoVerif output excerpt

Here, we used the random oracle model for ease of modeling; however, a much weaker
collision resistance property would suffice to prove the result.

Trail of Bits 37 Ockam Design Review
PUBLIC

D. Use Case Diagrams

The following diagrams show the various steps taken for the TCP Portals and Kafka Portals
use cases, including the relationships between various keys and storage items. Section D.1
contains general diagrams that show processes common to both use cases, while section
D.2 contains diagrams for the TCP Portals use case, and section D.3 contains diagrams for
the Kafka Portals use case.

D.1 General
Overview

Trail of Bits 38 Ockam Design Review
PUBLIC

Enroll with the Orchestrator Controller

Trail of Bits 39 Ockam Design Review
PUBLIC

Project Node Hierarchy

Trail of Bits 40 Ockam Design Review
PUBLIC

Create Space and Project

Trail of Bits 41 Ockam Design Review
PUBLIC

Get Project Credentials

Get Project Ticket

Trail of Bits 42 Ockam Design Review
PUBLIC

D.2 TCP Portals
Outlet and Relay Creation

Inlet Creation and Portal

Trail of Bits 43 Ockam Design Review
PUBLIC

D.3 Kafka Portals
Kafka Config

Kafka Consumer Creation

Trail of Bits 44 Ockam Design Review
PUBLIC

Kafka Producer Creation and Portal

Trail of Bits 45 Ockam Design Review
PUBLIC

